On the basis of organic matter content, soils are characterized as mineral or organic. Mineral soils form most of the world’s cultivated land and may contain from a trace to 30% organic matter. Organic soils are naturally rich in organic matter principally for climatic reasons. Although they contain more than 30% organic matter, it is precisely for this reason that they are not vital cropping soils.
This soils bulletin concentrates on the organic matter dynamics of
cropping soils. In brief, it discusses circumstances that deplete organic
matter and the negative outcomes of this. The bulletin then moves on to more
proactive solutions. It reviews a “basket” of practices in order to show how
they can increase organic matter content and discusses the land and cropping
benefits that then accrue.
Soil organic matter is any material produced originally by living
organisms (plant or animal) that is returned to the soil and goes through the
decomposition process (Plate 1). At any given time, it consists of a range of
materials from the intact original tissues of plants and animals to the
substantially decomposed mixture of materials known as humus (Figure 1).
Plate 1
Crop residues added to the soil are decomposed by soil macrofauna and micro-organisms, increasing the organic matter content of the soil. A.J. BOT |
FIGURE. 1
Components of soil organic matter and their functions
Most soil organic matter originates from plant tissue. Plant residues contain 60-90% moisture. The remaining dry matter consists of carbon (C), oxygen, hydrogen (H) and small amounts of sulphur (S), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg). Although present in small amounts, these nutrients are very important from the viewpoint of soil fertility management.
Soil organic matter consists of a variety of components. These
include, in varying proportions and many intermediate stages, an active organic
fraction including microorganisms (10-40%), and resistant or stable organic
matter (40-60%), also referred to as humus.
Forms and classification of soil organic matter have been described
by Tate (1987) and Theng (1987). For practical purposes, organic matter may be
divided into aboveground and belowground fractions. Aboveground organic matter
comprises plant residues and animal residues; belowground organic matter
consists of living soil fauna and microflora, partially decomposed plant and
animal residues, and humic substances. The C:N ratio is also used to indicate
the type of material and ease of decomposition; hard woody materials with a
high C:N ratio being more resilient than soft leafy materials with a low C:N
ratio.
Although soil organic matter can be partitioned conveniently into different
fractions, these do not represent static end products. Instead, the amounts
present reflect a dynamic equilibrium. The total amount and partitioning of
organic matter in the soil is influenced by soil properties and by the quantity
of annual inputs of plant and animal residues to the ecosystem. For example, in
a given soil ecosystem, the rate of decomposition and accumulation of soil
organic matter is determined by such soil properties as texture, pH,
temperature, moisture, aeration, clay mineralogy and soil biological
activities. A complication is that soil organic matter in turn influences or
modifies many of these same soil properties.
Organic matter existing on the soil surface as raw plant residues
helps protect the soil from the effect of rainfall, wind and sun. Removal,
incorporation or burning of residues exposes the soil to negative climatic
impacts, and removal or burning deprives the soil organisms of their primary
energy source.
Organic matter within the soil serves several functions. From a
practical agricultural standpoint, it is important for two main reasons: (i) as
a “revolving nutrient fund”; and (ii) as an agent to improve soil structure,
maintain tilth and minimize erosion.
As a revolving nutrient fund, organic matter serves two main
functions:
- As soil
organic matter is derived mainly from plant residues, it contains all of
the essential plant nutrients. Therefore, accumulated organic matter is a
storehouse of plant nutrients.
- The stable
organic fraction (humus) adsorbs and holds nutrients in a plant-available
form.
Organic matter releases nutrients in a plant-available form upon
decomposition. In order to maintain this nutrient cycling system, the rate of
organic matter addition from crop residues, manure and any other sources must equal
the rate of decomposition, and take into account the rate of uptake by plants
and losses by leaching and erosion.
Where the rate of addition is less than the rate of decomposition,
soil organic matter declines. Conversely, where the rate of addition is higher
than the rate of decomposition, soil organic matter increases. The term steady
state describes a condition where the rate of addition is equal to the rate of
decomposition.
In terms of improving soil structure, the active and some of the
resistant soil organic components, together with micro-organisms (especially
fungi), are involved in binding soil particles into larger aggregates.
Aggregation is important for good soil structure, aeration, water infiltration
and resistance to erosion and crusting.
Traditionally, soil aggregation has been linked with either total C
(Matson et al., 1997) or
organic C levels (Dalal and Mayer, 1986a, 1986b). More recently, techniques
have developed to fractionate C on the basis of lability (ease of oxidation),
recognizing that these subpools of C may have greater effect on soil physical
stability and be more sensitive indicators than total C values of carbon
dynamics in agricultural systems (Lefroy, Blair and Strong, 1993; Blair, Lefroy
and Lisle, 1995; Blair and Crocker, 2000). The labile carbon fraction has been
shown to be an indicator of key soil chemical and physical properties. For
example, this fraction has been shown to be the primary factor controlling
aggregate breakdown in Ferrosols (non-cracking red clays), measured by the
percentage of aggregates measuring less than 0.125 mm in the surface crust
after simulated rain in the laboratory (Bell et al., 1998, 1999).
The resistant or stable fraction of soil organic matter contributes
mainly to nutrient holding capacity (cation exchange capacity [CEC]) and soil
colour. This fraction of organic matter decomposes very slowly. Therefore, it
has less influence on soil fertility than the active organic fraction.
Chapters 2 and 3 deal with the transformation of organic matter by
soil organisms and with natural factors influencing the level of organic matter
content in the soil. Chapter 4 discusses the various management practices that
affect the accumulation of organic matter in the soil. Chapter 5 examines how
to create drought-resistant soil, while Chapter 6 explores various aspect of
sustained food production. Chapter 7 examines the role of conservation
agriculture, and Chapter 8 presents the conclusions.
Annex 1 provides background information on the different soil organisms
of importance in agriculture. Annex 2 provides details of the effects of
organic matter on biological, chemical and physical soil properties.
Comments
Post a Comment