Skip to main content

Potato Growth and Irrigation Scheduling

All plants vary in their water requirements according to their size and growth stage as well as the length of their maturity and time of year of maximum growth. Possibly no other major crop varies in its sensitivity to water stress based on growth stage than potatoes. Irrigation recommendations at key production periods are based on the S-shaped growth curves of roots, vines and tubers. Soil moisture requirements are related to different growth stages.

1. Pre-planting to Planting:

A pre-plant irrigation is often recommended for two reasons. First, soil moisture should be about 70 to 80% field capacity. This will bear-saturate the field, allowing some room for rains. This level amounts to around a quarter of the allowable deficit of the soil. Soil moisture should be acceptable to support the developing roots after planting and reach emergence. Another benefit from a “pre-irrigation” is the breaking down of clods and clumps for better planting.

2. Planting to Pre-emergence (Sprouting):

Soil moisture in the top foot of soil should be 65 to 80%. No irrigation is recommended during this production period. First, seed-pieces at a recommended size 30-60g, have sufficient water to support the sprout until emergence. Irrigating during this period would raise the soil moisture and lower soil aeration to a level that would support several pathogens, most notable bacterial soft rot or black leg (Erwinia carotovora), and stem and stolon canker (Rhizoctonia solani). Excess moisture will also decrease tuber respiration, putting the seed-piece under metabolic stress. Water deficit, too-dry soil, will decrease the healing of the cut surfaces of seed-pieces, inhibit root growth and increase susceptibility to soil pathogens such as Fusarium and Rhizoctonia. In short, pre-plant irrigation and seed-piece water are more than sufficient to carry the sprouting tuber.

3. Emergence to Tuber Initiation (Early Vine Growth):

This is the log phase of vine growth. Roots are in the second half of their growth. During this period, the vine grows very rapidly, as much as doubling the canopy every week. With rapidly increasing foliage every week, irrigation starts low and gradually increases every week. A soil moisture of 70 to 80% is preferred, less than 65% FC would be considered a deficit. Water deficiency at this point would inhibit canopy and root growth, and indirectly weed control by less ground cover. An excess would retard root branching (development) by water-logging root hairs and promote nitrogen leaching. In short, with an increase in foliage and thereby transpiration, irrigation should begin and gradually increase as the canopy grows.

4. Tuber Initiation to Full Bloom (Vegetative or Stage II. Tuberization):

In determinate varieties full bloom marks the end of vine growth, while in indeterminate varieties full bloom starts a noticeable slow-down of vine growth, some branching still occurs. The first set of tubers are being initiated and these are in a slow-growth, development stage, the lag phase of tuber growth. Irrigation becomes increasingly important and water stress becomes less tolerable, transpiration reaches its highest rate. Irrigation increases per week on sandy type soils. Water deficit would dramatically increase tuber malformations and sugar-ends. It can also weaken plants, promoting early blight. Common scab (Streptomyces scabies) attack is promoted and the longer the deficit, the greater the attack and more pronounced and enlarged the blemishes. In areas and with varieties prone to common scab, maintaining soil moisture at 90 to 95% is suggested if possible. Excessive water will increase brown centre and hollow heart of larger tubers, and promote early dying of the vine. Too much loose water, swampiness, can also promote late blight, and weaken plants promoting early blight. In short, soil moisture levels must be increased and therefore irrigation is increased. Note, also that this stage of the plant often corresponds with June and July and the hottest of weather. The length of this period is also related to variety, weather and cultural practices. It may be prolonged by excessive nitrogen.

Comments

Popular posts from this blog

How to kill rats in your poultry house - using a mixture of baking soda, flour and sugar

Rats are dangerous animals in the poultry house and they cause problems both direct and indirect. Direct - they eat chicks or kill chicks rapidly. Indirect - they carry many diseases that affect chicks. Therefore, their presence in the poultry house is a big risk. However, it is a bit hard to control rats in the poultry house because most of the chemicals that kill rats are harmful to our birds. Nevertheless, today we shall break the secret on how to kill rats using safe methods. Remember I am an organic poultry farmer and I promote organic methods all the time. So now, let us see how to solve this rat issue. Organic method of getting rid of rats on farms and at home: Mix baking soda + flour + sugar at equal ratios 1:1:1. Mix thoroughly dry. Put them in small containers and place them at the corners of your poultry house. They will eat it and never return to disturb you again. If you have a small bowl of that size, you can also use it. Rats love flour and so will golf it. Secondly, t

Investing in Cassava: Learn from the Success of Yemisi Iranloye

Investing in cassava can be a lucrative opportunity for investors looking to diversify their portfolios. With the rise in demand for cassava products and the success of entrepreneurs like Yemisi Iranloye, there are valuable lessons to be learned. In this article, we will explore the potential of cassava as an investment, Yemisi Iranloye's success story, and key considerations for investing in cassava farming. We will also discuss strategies for maximizing returns in cassava investment. Read on to discover the key takeaways from this article. Key Takeaways Cassava farming presents a profitable investment opportunity due to the increasing demand for cassava products. Yemisi Iranloye's success in cassava investment can be attributed to her background, strategic planning, and perseverance. Investors should assess the market potential for cassava products and consider the risks and challenges associated with cassava farming. Developing

Complete Guide To Chicken Feed Formulation

The common ingredients are whole maize, maize bran, cotton seed cake, soya beans, sunflower and fishmeal (omena). In addition, farmers need to add several feed additives (micronutrients, minerals and vitamins) to ensure their birds have a balanced feed that meets their daily nutrient requirements. Ingredients are cheaply available, especially after the harvesting season. Depending on the cost of ingredients, farmers who make their own feeds at home save between 30 to 50% for every 70kg bag of chicken feed, depending on the source of their raw materials. Due to government regulation, major feed companies have reduced the standard quantity of feed from 70kg to 50kg per bag, but the price of feed still remains almost the same. This means that farmers who are able to make their own feeds make great savings on feeds which take up to 80% of the production costs. To formulate feed, farmers have to use the Pearson Square Method . In this method, the Digestible Crude Protein (DCP) is